The Effect of Intraoperative Methadone During Pediatric Cardiac Surgery on **Postoperative Opioid and Sedation Requirements**

Annika Barnett, MD Pediatric Anesthesia Fellow, Duke University Hospital Mentor: Edmund Jooste, MD

Clinical Conundrum

- O Difficult pain control in this patient population
 - O Sternotomy very painful
 - O Many are not opioid naive
- O Long ICU course
 - O Sedation often required
 - O Prolonged opioid infusions
- O Many patients required opioid weans to Methadone

Why not start with Methadone at beginning of perioperative course, instead of the end?

Why Methadone?

Multiple Sites of Action

Long half-life

Hemodynamically stable

Methadone in Cardiac Surgery

Intraoperative Methadone for the Prevention of Postoperative Pain

A Randomized, Double-blinded Clinical Trial in Cardiac Surgical Patients

Glenn S. Murphy, M.D., Joseph W. Szokol, M.D., Michael J. Avram, Ph.D., Steven B. Greenberg, M.D., Jesse H. Marymont, M.D., Torin Shear, M.D., Kruti N. Parikh, B.S., Shivani S. Patel, B.A., Dhanesh K. Gupta, M.D.

Methadone in Pediatric Surgery

Comparison of morphine and methadone for prevention of postoperative pain in 3- to 7-year-old children

Charles B. Berde, MD, PhD, Judith E. Beyer, RN, PhD, Marie-Christine Bournaki, RN, MS, Cynthia R. Levin, RN, MA, and Navil F. Sethna, MB, ChB

From the Departments of Anaesthesia (Pediatrics) and Nursing, Children's Hospital and Harvard Medical School, Boston, Massachusetts, and the University of Colorado Health Sciences Center School of Nursing, Denver

Methadone in Pediatric Surgery

Journal of Anesthesia (2018) 32:702–708 https://doi.org/10.1007/s00540-018-2541-5

ORIGINAL ARTICLE

Analgesic effects of methadone and magnesium following posterior spinal fusion for idiopathic scoliosis in adolescents: a randomized controlled trial

David P. Martin^{1,2} · Walter P. Samora III³ · Allan C. Beebe³ · Jan Klamar³ · Laura Gill³ · Tarun Bhalla^{1,2} · Giorgio Veneziano^{1,2} · Arlyne Thung^{1,2} · Dmitry Tumin¹ · N'Diris Barry¹ · Julie Rice¹ · Joseph D. Tobias^{1,2}

Methadone in Pediatric Surgery

Multimodal anesthesia with the addition of methadone is superior to epidural analgesia: A retrospective comparison of intraoperative anesthetic techniques and pain management for 124 pediatric patients undergoing the Nuss procedure

CrossMark

Neil R. Singhal *, John Jones, Janet Semenova, Amber Williamson, Katelyn McCollum, Dennis Tong, Jonathan Jerman, David M. Notrica, Hayden Nguyen

Valley Anesthesiology Consultants, Phoenix Children's Hospital, Surgery and Pain Management, Phoenix, AZ, USA

Study Design

O Retrospective Chart Review

 O 198 Patients who underwent cardiac surgery between June 2017 and August 2018

 Divided patients into two groups: Neonatal and Non-neonatal

Patient Selection

Inclusion criteria

- Age <18 yo
- Cardiac Surgery with cardiopulmonary bypass between June 2017 and August 2018

Exclusion Criteria

- ECMO pre- or postoperatively
- Use of preoperative Methadone
- No Methadone after practice change in Jan 2018

Study Endpoints


Primary Endpoint

• Perioperative Opioid Use

Secondary Endpoints

- Pain Scores
- Perioperative sedation requirements
- Pain and Sedation Scores
- Extubation in OR
- Time to first dose of Oral Oxycodone
- Need for Naloxone

Results

Patient Demographics

Neonates				Non-
	Pre (n=21)	Post (n=23)	p-value	
Age (days)	10.76 (6.39)	11.35 (5.49)	0.7454 ¹	Age ()
Sex	5 (23.81%)		0.7403 ²	Sex
Female	5 (23.81%)	7 (30.43%)		30,
Male	16 (76.19%)	16 (69.57%)		
Race			0.8032 ²	Race
Black	2 (9.52%)	4 (17.39%)		
Other	3 (14.29%)	4 (17. 39%)		
White	16 (76.19%)	15 (65.22%)		
Weight (kg)	3.70 (0.54)	3.31 (0.61)	0.03311	Weigh
ASA Score			0.003 ²	ASA So
2	1 (4.76%)	0 (0%)		
3	5 (23.81%)	0(0%)		
4	14 (66.67%)	23 (100%)		
5	1 (4.76%)	0 (0%)		

Non- Neonates			
	Pre(n=69)	Post (n=85)	p-value
Age (years)	2.54 (3.86)	3.48 (4.92)	0.7556 ¹
Sex			0.1956 ²
Female	36 (52.17%)	35 (41.18%)	
Male	33 (47.83%)	50 (58.82%)	
Race			0.8281 ²
Black	18 (26.09%)	26 (30.59%)	
Other	15 (21.74%)	18 (21.18%)	
White	36 (52.17%)	41 (48.24%)	
Weight (kg)	14.61 (17.62)	17.04 (16.04)	0.57461
ASA Score			0.0800 ²
2	3 (4.35%)	6 (7.06%)	
3	38 (55.07%)	59 (69.41%)	
4	27 (39.13%)	20 (23.53%)	
Ę	1 (1.45%)	0 (0%)	

The numbers are reported as number of patients (percentage). The shaded values highlight the differences within the neonatal group of weight and ASA scores between those who did and did not receive Methadone. P-value calculated with ¹Wilcoxon and ²Fisher Exact test.

Neonatal Patients

O Age <30 days

O 44 total patients

O 21 pre-Methadone intervention, 23 post-Methadone intervention

Intraoperative Medication Use

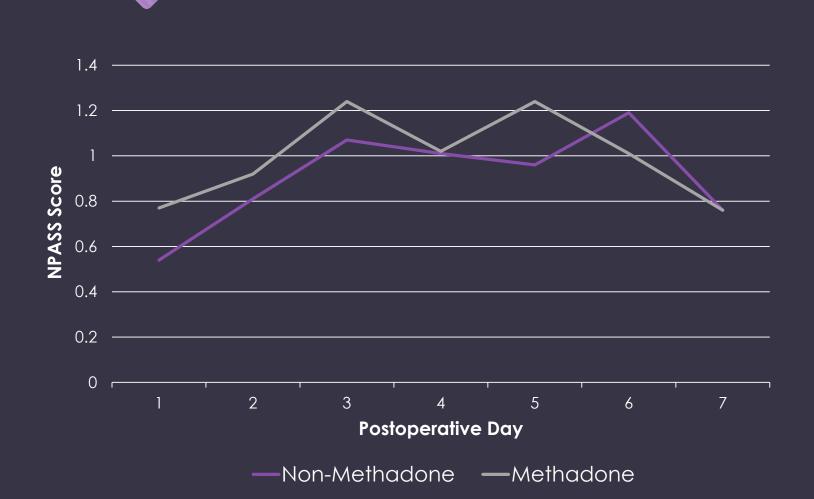
	Pre	Post	p-value
Opioids (MME/kg)	2.89 (1.47)*	1.98 (1.96)*	0.0112 ¹
Midazolam (mg/kg)	0.27(.17)	0.25(.19)	0.6773 ³
Ketamine (mg/kg)	1.25(1.00)	1.10(1.22)	0.44301
Acetaminophen (mg/kg)	6.99 (5.74)	9.08 (4.71)	0.20841
Dexmedetomidine			
(mcg/kg)	3.03 (1.58)*	2.03 (1.86)*	0.00561

Numbers reported as mean (standard deviation) or number of patients (percentage) as appropriate. P-value calculated with ¹Wilcoxon, ²Fisher Exact, or ³Equal Variance t-test as appropriate.

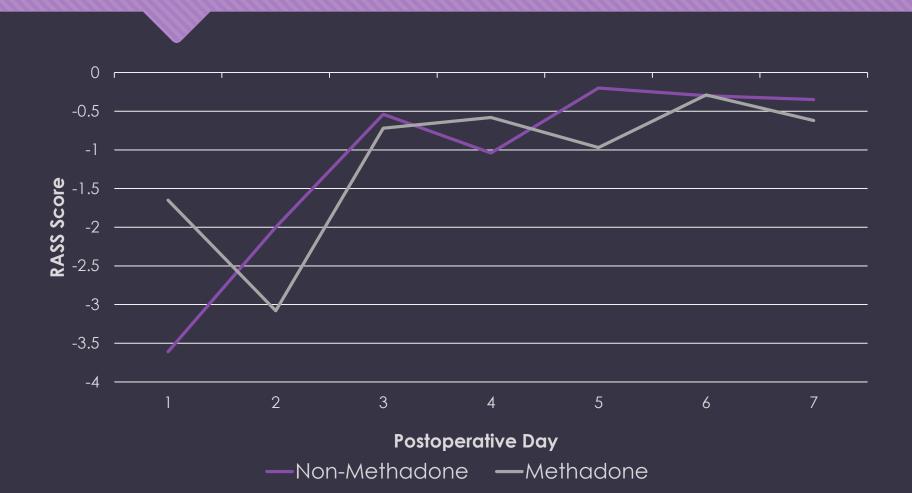
*indicates values with statistically significant difference (p-value <0.05)

First 24-hour Postoperative Medication Use

	Pre	Post	P-value
Opioids (MME/kg)	4.30(2.83)	2.97(2.00)	0.1154 ¹
Midazolam (mg/kg)	0 (0.00)	0.04 (0.14)	0.09561
Ketamine (mg/kg)	0.31(0.71)	0.31(0.71)	0.5938 ¹
Acetaminophen (mg/kg)	34.43(20.54)	37.99(19.41)	0.33331
Dexmedetomidine (mcg/kg)	9.45(6.41)	7.13(5.80)	0.2144 ¹
Lorazepam (mg/kg)	0.02(0.07)	0.01 (0.03)	0.2582 ¹


First 7-days Postoperative Medication Use

	Pre	Post	P-value
Opioids (MME/kg)	103.65(67.16)	111.44 (85.04)	0.9065 ¹
Midazolam (mg/kg)	0.003 (0.1)	0.04 (0.14)	0.1863 ¹
Ketamine (mg/kg)	3.09 (5.40)	4.00 (4.09)	0.12061
Acetaminophen (mg/kg)	110.63 (74.32)	89.16 (75.67)	0.1921 ¹
Dexmedetomidine (mcg/kg)	71.57 (61.64)	61.40 (51.16)	0.4520 ¹
Lorazepam (mg/kg)	0.07 (0.11)	0.06 (0.14)	0.3219 ¹


Additional Secondary Outcomes in Neonatal Patients

	Pre	Post	p-value
Naloxone Used	1 (4.76%)	0 (0%)	0.4773 ²
Oxycodone Used	6 (28.57%)	4 (17.39%)	0.4805 ²
Time to First Oxycodone dose (hrs)	127.37 (29.00)	129.15 (34.07)	0.9313 ³
Extubation in OR	1 (4.76%)	1 (4.35%)	12

Average NPASS Scores

Average RASS Score

Non-neonatal Group

O Patients age >30 days

O 154 total patients

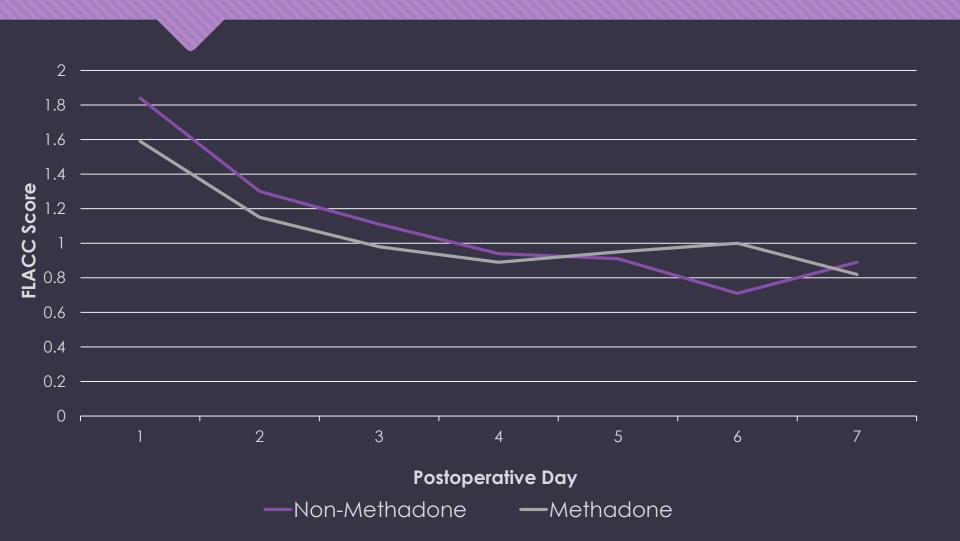
O 69 patient pre-Methadone, 85 patients post-Methadone intervention

Intraoperative Medication

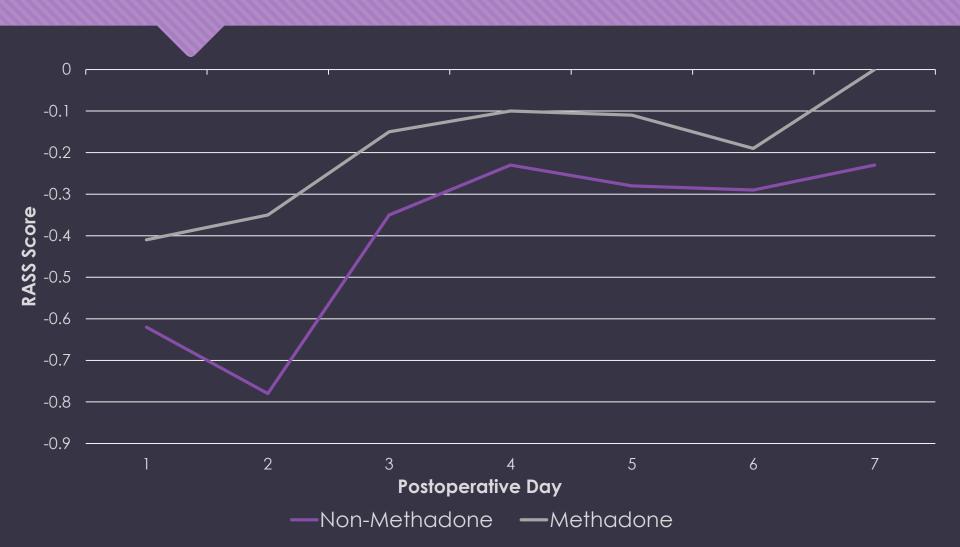
	Pre	Post	P-value
Opioids (MME/kg)	1.82 (1.08)*	0.94 (0.80)*	<0.0011
Midazolam (mg/kg)	0.19 (0.24)*	0.10 (0.15)*	0.003 ³
Ketamine (mg/kg)	0.82 (1.01)	0.55 (0.88)	0.482 ¹
Acetaminophen (mg/kg)	11.60 (6.00)	11.64 (6.34)	0.32511
Dexmedetomidine (mcg/kg)	3.39 (1.57)*	1.91 (1.52)*	<0.001 ¹

First 24-hour Postoperative Medication Use

	Pre	Post	P-value
Opioids (MME/kg)	2.18(2.70)*	1.42(1.92)*	0.0193 ¹
Midazolam (mg/kg)	0.22(1.59)	0.01 (0.07)	0.5 ¹
Ketamine (mg/kg)	0.42(1.24)	0.44(1.31)	0.8694 ¹
Acetaminophen (mg/kg)	54.41(10.59)	55.40(9.53)	0.20541
Dexmedetomidine (mcg/kg)	8.42 (10.00)*	5.11 (7.04)*	0.0109
Lorazepam (mg/kg)	0.08(0.14)*	0.02(0.07)*	0.0005 ¹


First 7-days Postoperative Medication Use

	Pre	Post	P-value
Opioids (MME/kg)	51.12 (82.98)	36.78 (65.48)	0.0932 ¹
Midazolam (mg/kg)	0.01 (0.04)	0.05 (0.29)	0.7812 ¹
Ketamine (mg/kg)	3.79 (12.54)	1.62 (4.02)	0.64711
Acetaminophen (mg/kg)	198.27 (88.57)	179.86 (88.46)	0.20871
Dexmedetomidine (mcg/kg)	64.73 (114.41)*	23.06 (45.95)*	0.0043 ¹
Lorazepam (mg/kg)	0.25 (0.55)*	0.06 (0.17)*	<0.0011


Additional Secondary Outcomes

	Pre	Post	P-value
Naloxone Used	0 (0%)	3 (3.53%)	0.2532 ²
Time to 1st Oxycodone dose (hrs)	45.36 (31.79)	41.53 (28.23)	0.5711 ¹
Extubation in OR	43 (62.32%)	49 (57.65%)	0.6213 ²

Average FLACC Scores

Average RASS Score

Discussion

- O Less intraoperative opioids and dexmedetomidine requirements in all patients
- O Less differences seen in the neonatal group compared to non-neonatal group
- O Decreased postoperative opioid requirements in non-neonatal group
- Decreased need for sedation in non-neonatal group along with higher sedation scores
- O No difference in pain scores
- O Limitations:
 - O Retrospective study
 - O ICU did not change practice
- O Future studies will look at differences up to 30 days postoperatively

Methadone is an efficacious alternative to Fentanyl for intraoperative pain control in this patient population and may facilitate decrease postoperative opioid and sedation medication requirements

References

- Anand KJ, Clark AE, Willson DF, et al. Opioid analgesia in mechanically ventilated children: results from the multicenter Measuring Opioid Tolerance Induced by Fentanyl study. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2013;14(1):27-36.
- 2. Kharasch, E. Intraoperative Methadone: Rediscovery, Reappraisal, and Reinvigoration? Anesthesia & Analgesia. 2011: 112(1): 13-16.
- 3. Elefritz JL, Murphy CV, Papadimos TJ, Lyaker MR. Methadone analgesia in the critically ill. Journal of critical care. 2016;34:84-88.
- 4. Murphy GS, Szokol JW, Avram MJ, et al. Intraoperative Methadone for the Prevention of Postoperative Pain: A Randomized, Double-blinded Clinical Trial in Cardiac Surgical Patients. *Anesthesiology*. 2015;122(5):1112-1122.
- 5. Berde CB, Beyer JE, Bournaki MC, et al. Comparison of morphine and methadone for prevention of postoperative pain in 3-to 7-year-old children. *Journal of Pediatrics*. 1991; 119(1):136-141.
- 6. Martin DP, Samora WP, 3rd, Beebe AC, et al. Analgesic effects of methadone and magnesium following posterior spinal fusion for idiopathic scoliosis in adolescents: a randomized controlled trial. *Journal of anesthesia*. 2018;32(5):702-708.
- Singhal NR, Jones J, Semenova J, et al. Multimodal anesthesia with the addition of methadone is superior to epidural analgesia: A retrospective comparison of intraoperative anesthetic techniques and pain management for 124 pediatric patients undergoing the Nuss procedure. *Journal of pediatric surgery*. 2016;51(4):612-616.
- 8. Ward RM, Drover DR, Hammer GB, et al. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Paediatric anaesthesia. 2014;24(6):591-601.
- 9. Alvarez RV, Palmer C, Czaja AS, et al. Delirium is a Common and Early Finding in Patients in the Pediatric Cardiac Intensive Care Unit. The Journal of pediatrics. 2018;195:206-212.

Questions or Comments

